发表论文 Publications
  PREPRINTS and PUBLICATIONS
  [22]. M. Liu, H. Wu. Loop-erased random walk branch of uniform spanning tree in topological polygons.
  arXiv:2108.10500. 2021.
  [21]. M. Liu, E. Peltola, H. Wu. Uniform spanning tree in topological polygons, partition functions for SLE(8), and correlations in c = −2 logarithm CFT.
  arXiv:2108.04421. 2021.
  [20]. T. Lupu, H. Wu. A level line of the Gaussian free field with measure-valued boundary conditions.
  arXiv:2106.15169. 2021.
  [19]. Y. Han, M. Liu, H. Wu. Hypergeometric SLE with κ = 8: convergence of UST and LERW in topological rectangles.
  arXiv:2008.00403 (under revision) 2020.
  [18]. E. Peltola, H. Wu. Crossing probabilities of multiple Ising interfaces.
  arXiv:1808.09438 (submitted). 2018.
  [17]. J. Ding, M. Wirth, H. Wu. Crossing estimates from metric graph and discrete GFF.
  Ann. Inst. H. Poincar ́e Probab. Statist. to appear. 2021+.
  [16]. V. Beffara, E. Peltola, H. Wu. On the uniqueness of global multiple SLEs.
  Ann. Probab. 49(1): 400-434, 2021.
  [15]. M. Liu, H. Wu. Scaling limits of crossing probabilities in metric graph GFF.
  Electron. J. Probab. 26: article no. 37, 1-46, 2021.
  [14]. H. Wu. Hypergeometric SLE: conformal Markov characterization and applications.
  Comm. Math. Phys. 374(2): 433-484, 2020.
  [13]. C. Garban, H. Wu. On the convergence of FK-Ising percolation to SLE(16/3, 16/3 − 6).
  J. Theor. Probab. 33: 828–865, 2020.
  [12]. E. Peltola, H. Wu. Global and local multiple SLEs for κ ≤ 4 and connection probabilities for level lines of GFF.
  Comm. Math. Phys. 366(2): 469-536, 2019.
  [11]. H. Wu. Alternating arm exponents for the critical planar Ising model.
  Ann. Probab. 46(5): 2863-2907, 2018.
  [10]. H. Wu. Polychromatic arm exponents for the critical planar FK-Ising model.
  J. Stat. Phys. 170(6): 1177-1196, 2018.
  [9]. G. Pete, H. Wu. A conformally invariant growth process of SLE excursions.
  Lat. Am. J. Probab. Math. Stat. 15: 851-874, 2018.
  [8]. J. Miller, H. Wu. Intersections of SLE paths: the double and cut point dimension of SLE.
  Probab. Theory Relat. Fields, 167:45-105, 2017.
  [7]. H. Wu, D. Zhan. Boundary arm exponents for SLE.
  Electron. J. Probab. 22: article no. 89, 1-26, 2017.
  [6]. E. Powell, H. Wu. Level lines of the Gaussian free field with general boundary data.
  Ann. Inst. H. Poincare Probab. Statist. 53(4), 2229–2259, 2017.
  [5]. M. Wang, H. Wu. Level lines of Gaussian free field I: zero-boundary GFF.
  Stochastic Process. Appl. 127(4):1045-1124, 2017.
  [4]. S. Sheffield, S. Watson, H. Wu. Simple CLE in doubly connected domains.
  Ann. Inst. H. Poincare Probab. Statist. 53(2): 594-615, 2017.
  [3]. H. Wu. Conformal restriction: the radial case.
  Stochastic Process. Appl. 125(2):552-570, 2015.
  [2]. W. Werner, H. Wu. On conformally invariant CLE explorations.
  Comm. Math. Phys. 320(3): 637-661, 2013.
  [1]. W. Werner, H. Wu. From CLE(κ) to SLE(κ, ρ).
  Electron. J. Probab. 18: article no. 36, 1-20, 2013.
  
   
    LECTURE NOTES and SURVEYS
    
   
  
   
    
     [2]. H. Wu. Conformal restriction and Brownian motion.
     Probab. Surv. 12:55-103, 2015.
     [1]. H. Wu. On the occupation times of Brownian excursions and Brownian loops.
     Lecture Notes in Math. Vol.2046:149-166, Springer, Heidelberg, 2012.